◎正当な理由による書き込みの削除について: 生島英之 とみられる方へ:神Allahから数学を教えてもらったのだが ->画像>1枚
動画、画像抽出 ||
この掲示板へ
類似スレ
掲示板一覧 人気スレ 動画人気順
このスレへの固定リンク: http://5chb.net/r/aasaloon/1622032059/ ヒント: 5chスレのurlに http ://xxxx.5chb .net/xxxx のようにb を入れるだけでここでスレ保存、閲覧できます。
http://oeis.org/A217575 http://oeis.org/A217571 http://oeis.org/A217570 /) / / ( @ @ )/ ヽ▽ノ 神と交信して数列を教えてもらった。 ∪▼∪ 世紀の大発見だぜ。 ∪∪ それから円周率が3.14じゃないと聞いた。 東日本大震災3.11もPiらしいよ。 1 |A|+|B|≧|A+B|, |A-B|≧|A|-|B| 三角不等式。 三角形が潰れる場合、等号成立。ベクトルとして同じ向きに平行の時に等号が成り立つ。 逆向きに平行の時は成り立たない。 少なくとも一方が0ならば等号は成り立つ。 |A|≧|B|の時、|A|≦|B|+|A-B| B=x、A-B=yとおくと |x+y|≦|x|+|y| となり基本形に帰着される。
2 点Aを始点とする位置ベクトルで考える。 △ABCに関してAB+BC+CA=0が、成り立つ。 この時、AL+BM+CN=0が成り立てば良い。 (b+c)/2+(c-b-b)/2+(b-c-c)/2=0となるので成り立つ。 三角形の成立条件。
3 A+B+C+D+E=0 A+B+C+D+E =r+RA+s+SB+t+TC+p+PD+q+QE =r+s+t+p+q+(1/2)(EA+AB+BC+CD+DE) =r+s+t+p+q =-k(A+B+C+D+E) k>0 ∴A+B+C+D+E=0。 FA+FB+FC+FD+FE=0 FA+FB+FC+FD+FE =5FO+A+B+C+D+E =5FO。
12 n次元ユークリッド空間 距離 ユークリッド距離 三角不等式 シュワルツの不等式 |a|^2|b|^2=|a・b|^2+|a×b|^2 開球体 内点 内部 外点 外部 境界点 境界 球面 触点 閉包 開集合と閉集合 双対的な概念 開集合系 ド・モルガンの法則 閉集合系
13 距離空間 距離関数、三角不等式、ヒルベルト空間、点aのε-近傍、内点、内部、外点、外部、境界点、境界、非交和、触点、閉包、開集合と閉集合、 集積点、導集合、孤立点、
14 近傍系と連続写像 近傍系n(a) 距離空間と連続写像 連続性の幾つかの表現と同値性
15 開核作用素、内部、内点、外部、外…、境界、境界点、非交和、集積点、導集合、孤立点、
16 近傍系N(a)、ハウスドルフの公理系、連続写像、包含写像、上への同相写像、同相または位相同型、
17 開基、基本近傍系、開集合の基底、開基底、閉集合の基底、閉基底、閉基、左半開区間、右半開区間、上限位相と下限位相、離散位相、密着位相、SはOの準開基、第一可算公理、第二可算公理、稠密な部分集合、可分、有理点、無理点、整点、整数点、
18 点列連続性、極限点、連続→点列連続、有向集合、有向点列、直積と同値、
19 積位相、積空間、因子空間、直積因子への射影、選択関数、λ成分、選択公理、全射、積写像、同相写像は開写像てあり閉写像である。箱型積位相、 20 商空間、全射、商位相、X/σ、等化空間、相対位相、クラインの壺、O₁-開集合、R/Z、同相写像、
21 分離公理、分離される、開集合による分離、ハウスドルフ空間、ハウスドルフの分離公理、正規空間、正則空間、対角線集合、閉近傍、一点集合、正規T1空間、正則T1空間、ウリゾーンの補題、互いに交わらない空でないO-閉集合、閉包、ウリゾーンの距離化定理
22 被覆する、被覆、部分被覆、開被覆、コンパクト集合、コンパクトである、ハイネ-ボレルの被覆定理、コンパクト空間、直径、有界、カントールの区間縮小定理、位相的性質、同相写像、選択公理は使われていない、Lebesgue数、
23 選択公理を使わない、有限交叉性を持つ、半順序、ツォルンの補題、極大元、因子空間への射影、選択公理、触点、カントール集合、
6 集合の大きさ、濃度、可算集合、全射、単射、全単射、一対一の対応、包含写像、恒等写像、逆写像、 7 濃度の大小、特性関数、対角線論法、カントール、ベルンシュタイン、ケーニッヒの記法、代数的数、超越数、 R〜P(N)
8 二項関係、同値関係、順序関係、半順序集合、包含関係、同値類、 商集合x/ρ、順序同型、順序同型写像、最小元、最大元、下界、上界、下限inf、上限sup 半順序集合、全順序集合、
10 直積、直積因子、選択公理、選択関数、射影、帰納的半順序集合、ツォルンの補題、
11 整列可能定理、選択公理とツォルンの補題と整列可能定理は全て互いに同値。整列集合の比較定理、Q上線型結合、ハメル基、線型独立、線型従属、
5 逆像、原像、像、Λの上の集合系、添字の集合と集合系、和集合と共通部分、部分集合系、上極限集合、下極限集合、極限集合、
24 局所コンパクト、相対コンパクト、一点コンバクト化、アレクサンドロフのコンパクト化、、ハウスドルフ空間
25 連結、連結集合、x~y、同値関係、完全不連結、中間値の定理、閉区間の連結性、局所連結、弧状連結、
26 完備性、異本列、コーシー列、完備距離空間、ハイネ-ボレルの被覆定理、部分列、縮小写像、不動点、一意存在定理、ベール、選択公理、稠密、
27 全有界、第2可算公理、全有界かつ完備、数学的帰納法、選択公理、
28 等長写像、完備化、完備拡大、全射等長写像、同値類、完備距離空間、選択公理、基本列、
29 一様収束位相、ディニ、一様有界、同程度連続、アスコリ-アルツェラ、相対コンパクト、近似定理、 1-1 試行、全事象、標本空間、Ω、事象、積事象、和事象、積集合、和集合、共通部分、共通集合、補集合、かつ、または、差集合、A\B、対称差、排反、集合、集合族、可測集合族、可測集合、確率空間、Ω、B、P、終。
29 一様収束位相、ディニ、一様有界、同程度連続、アスコリ-アルツェラ、相対コンパクト、近似定理、 部分多元環、ストーン-ワイエルシュトラス、閉包、開核、分離する、消滅しない、二点固有性を持つ、拡張、拡張可能、ティーツェの拡張定理、ウリゾーンの補題、
付録 小数展開は一意とは限らない、和+と積・、反復数列、Q⊂R、絶対値、アルキメデスの原理、収束列、基本列、有理数の稠密性、任意の実数はある有理数列の極限値として表される。実数の完備性、任意の「実数の基本列」はある実数に収束する。カントールの区間縮小定理、唯一つの実数が含まれる。ワイルしュトラスの定理、上限=最小上界、下限=最大下界、空でない部分集合、
30 コンパクト開位相、離散位相、相対位相、ハウスドルフ空間、正則空間、点f、点g、開近傍、閉近傍、包む、同等、結合写像、局所コンパクトハウスドルフ空間、単位元、逆元、同相写像群、位相群、コンパクト集合、開集合、標準基底、
u、v行列を2階のテンソル aベクトルを1階のテンソル p個の線型独立なベクトルの多重線型写像をp階のテンソルと言う。 T(u+v)=T(u)+T(v)、T(ku)=kT(u) T(a b c … u+v … ) =T(a b c … u … )+T(a b c … v … ) T(a b c … ku … )=kT(a b c … u … ) 実数は0階のテンソルと言う。 ここでは直交性を仮定する、直交ベクトル、直交テンソルのみを扱う。
3階のテンソルTijkは27個の成分 基本計量テンソル テンソルの商法則 W=T(w) T:w→W T(w₁+w₂)=T(w₁)+T(w₂)=W₁+W₂ T(kw)=kT(w)=kW Einsteinの総和の規約
a∈A、A∋a、a∉A、A∌a 元ゲン、要素、 例1 正整数全体の集合ℕ 7∈ℕ、ℕ∋5、-2∉ℕ、ℕ∌√2 例2 素数全体の集合A A=B、A≠B 例3 根の集合AとB={2, 5.7} A=B ∅ 空集合、ℕ⊂ℤ⊂ℚ⊂ℝ⊂ℂ 部分集合A⊂B、B⊃A 含む、包む、真部分集合、 ∀a∈A⇒a∈B ⇔∃a∉B⇒a∉A A=∅の時, 例4 冪集合2³=8。集合族。 開区間、閉区間、左半開区間、右半開区間
和集合A∪B、共通部分A∩B 差集合A-B 交わる、交わらない非交和集合 または直和 例1 A∪B、A∩B、A-B、B-A 定理1 A⊂A∪B、B⊂A∪B A∪B=B∪A、A∩B⊂A、 A⊂B⊂B 和集合と共通部分に関する交換法則 定理2 最大性と最小性 定理3 結合法則
定理4 分配法則 A∪(B∩C)=(A∪B)∩(A∪C) x∈A∪(B∩C)とする。 x∈Aまたはx∈B∩C x∈A⇒x∈A∪Bかつx∈A∪C x∈B∩C⇒x∈(A∪B)∩(a∪C) B⊂A∪B、C⊂A∪C。 x∈A⇒x∈(A∪B)∩(A∪C) かつx∈A∪(B∩C) x∈¬A⇒x∈(B∩C)、 x∈(A∪B)∩(A∪C) かつx∈A∪(B∩C) A∩(B∪C)=(A∩B)∪(A∩C) x∈A∩(B∪C)⇒x∈Aかつ(x∈またはx∈C) ⇔x∈A∩Bまたはx∈A∩C 逆にx∈A∩Bまたはx∈A∩Cの時, x∈Aかつx∈B∪C
定理 ドモルガンの法則 x∈X-(A∩B) ⇔x∈X ∧ x∉A∧B ⇔x∈X ∧ x∉A∨x∉B ⇔x∈X-A∨x∈X-B x∈X-(A∨B) ⇔x∈X∧x∉A∨B ⇔x∈X ∧ x∉A∧x∉B ⇔x∈X-A ∧ x∈X-B ⇔x∈(X-A)∧(X-B) 実数全体ℝ、複素数全体ℂ、 平面上の点全体ℝ² 全体集合、部分集合、補集合Aᶜ 普遍集合、対称差、 補集合に関するドモルガンの法則 (A∧B)ᶜ=Aᶜ∨Bᶜ、(A∨B)ᶜ=Aᶜ∧Bᶜ A○B=(A-B)∨(B-A)
順序対 (a, b)=(c, d)、(a, b)≠(e, f) 直積A×B 順序対( )と開集合( )は同じ記号 例1 直積 直積A₁×A₂×…×Aₙ
関数、写像f : A→B Aは始域、定義域、 Bは終域、値域 well-defined 指数関数a^x 有理数列xₙ→x (n→∞) a^xₙ→a^x (n→∞) A→Bを定義する時, A→C→Bとなる経由CによらないでBに到着する必要がある。存在と一意性 圏と関手、自然に定まる対象 恒等写像 id(A)
全ての集合の集まりは集合ではない。 順序数、濃度、有限集合、 X AからBへの単射な写像が存在する時, |A|≦|B| Y 全単射な写像が存在するならば|A|=|B| Xかつ¬Y⇒|A|<|B| 全射な写像があれば|A|≧|B| Aを無限集合とすると A=A₁∪A₂ ∧ |A₁|≧|A₂|⇒|A|=|A₁| |A×A|=|A| A⊃B ∧ |A|>|B|⇒|A|=|A\B| (3)→(1)より従う。 Aの冪集合とはAの部分集合全体の集合P(A)=2^A、|2^A|>|A| 合理的集合論 可算集合=ℕ φ(a)=1であるようなaの集合は1を含むようなa全体の集合、 {x y z}→{0, 1}な2³=8個。 x、y、z、xy、yz、zx、xyz、∅ φ(x)=1、φ(y)=φ(z)=1 φ(xy)=φ(yz)=φ(zx)=1 φ(xyz)=1、φ(∅)=1 B={0, 1}、φ:A→B
Λを添字集合に持つ集合族{aA_Λ} 置換公理、Xₙ₊₁=P(Xₙ) 冪集合 i→λᵢ→A_λᵢ、a_λ(λ∈Λ)、 ∐xXᵢ、空でない集合による集合族直積Π[λ∈Λ]A_Λ≠∅ (選択公理) 関係Rがある、関係Rがない 順序集合、全順序集合、 反射律、推移律、対称律、 全順序性、x₀はSの上界 順序に関して極大元 Zornの補題
全微分 ∫∫_Dη=∫∫_DR(x, y)dxdy 向きは左回り、dx∧dy ∫_Cω=∫_C Pdx+Qdy
B、確率空間(Ω, B, P) 測度論、 P(A|B)=P(A∩B)/P(B) Bの下でのAの条件付き確率
次のdをX上の距離関数という 集合Xと関数dをd:X×X→R 任意の3点x, y, z∈Xに対して次の3点が成り立つ 1 関数d(x, y)≧0となる 等号成立はx=yのときそしてそのときに限る 2 d(x, y)=d(y, x) 3 d(x, z)≦d(x, y)+d(y, z) 写像の連続性 位相同型写像 距離を定めた空間を距離空間 距離の概念から位相的性質を探るd₂ d₁ d_∞ ℝⁿ上の距離関数
距離空間(X, d) x∈Xを(X, d)の点と言う dを距離と言う Eⁿ=(ℝⁿ, d₂) 距離空間 n次元Euclid空間 集合としては同じだが距離関数が異なるので異なる距離空間である
X⊂Yとする ∀x, y∈X、dₓ=dy⇒(X, d)は(Y, d)の部分距離空間 制限写像d|X×X Eⁿの部分空間、図形 (S², d)は距離空間 これはE³=(ℝ³, d₂)の部分空間ではない 大円劣孤pq d≠d₂ 距離関数が異なるので距離空間は異なる。 大圏コース 測地線 測地線は距離関数になる d=180 (x≠y)、=0(x, y) dはX上の距離関数 d₀(x, y)=1、0 離散距離関数 離散距離空間 単射X→(Y, d_Y)、 d(x, y)=dʏ(h(x), h(y)) (x, y)∈X d: X×X→ℝ X上の距離関数、合成関数
∀x, y∈X、h(x), h(y)∈Y h: X→Y、単射 d(x, y)≧0かつdʏ(h(x), h(y))≧0 x=y⇔h(x)=h(y)⇔dʏ(h(x), h(y))=0⇔d(x, y)=0 dʏから誘導された距離関数 d(x, y)=dʏ(h(x), h(y))と定義する dʏ(X, Y) 全単射h: M(2, ℝ)→E⁴ d₂から誘導された距離関数d 幾何学的な点として見ることが出来るようになる。
read.cgi ver 07.7.25 2025/07/21 Walang Kapalit ★ | Donguri System Team 5ちゃんねる
lud20251005131339このスレへの固定リンク: http://5chb.net/r/aasaloon/1622032059/ ヒント: 5chスレのurlに http ://xxxx.5chb .net/xxxx のようにb を入れるだけでここでスレ保存、閲覧できます。TOPへ TOPへ
全掲示板一覧 この掲示板へ 人気スレ |
Youtube 動画
>50
>100
>200
>300
>500
>1000枚
新着画像 ↓この板の人気?スレ↓(一覧 ) ・AAを使ってRPGを作るスレ Part5 ・( ゚ω゚ )お断りしますのAA ・◆◆AA作成依頼専用スレ@AAサロン Part101◆◆ ・ストレスたまってるから自分でaaで荒らす ・バカウヨのAA Part.2 ・ぼっちざろっくAA ・AA練習・テストスレPart1403 ・( ´_⊃`)←これかわいい ・□■□■□第十三回紅白AA合戦■□■□■ ・スマイルプリキュアの黄瀬やよい(キュアピース)のAAを貼るスレ ・萌え系のAA貼って ・【常時age】真理の御魂・最聖・麻原彰晃尊師スレ154 ・腐女子のAA part8 ・☆AA保管庫☆ ・ドラクエモンスターのAAをひたすら貼るスレ ・擬人化2chキャラ 四人目 ・日本人を煽るAAを貼るスレ ・AA練習・テストスレPart1401 ・IDにmonaとかgikoとか出すスレ Part 197 ・爆炎から人影が近づいてくるAAください ・このAAのキャラ名教えてください ・BS実況AA part.8 ・AA練習・テストスレPart1399 ・【プラセンタ献血】中川翔子のAAを集めるスレ【動物アイゴー】 ・(´・ω・`)AAっと…知らんがなpart48 ・ERROR:本文が長すぎます!(Check:○○○○/2048)←これ消したい ・踊ってるAAください!!!!!!!!!!!!!!! ・支那の町非公認ゆるキャラちんだっし〜!ちんだっし〜! ・レフトAA美術館